Why Harsh Environments

- Dense urban terrain represents the single most hazardous setting for engagement
- Casualty rate extremely high
- Increasing shift of world population to cities
 85% of world population by 2024
- GPS often ineffective
- Need to protect our forces, remove personnel from areas of high threat, deploy sensors & robots
- Other harsh settings: on ships, inside cargo containers, close to the ground...

UWB Claims

- No fading from destructive interference (coherent effects are less)
- Potential for single chip, all digital (cost savings)
- Lower power dissipation (few analog components)
- · Built-in LPI/LPD/LPJ
- No need to get spectral allocation (uwb signal is buried in the noise)
- Penetration capability walls, ground (enabled by low frequency component)
- High precision ranging (enabled by high frequency component)

- · Focus on the real advantages of UWB
- Design and implement <u>next-generation</u> UWB hardware and software for ad-hoc networking in extreme environments.
- Develop uwb network-based geolocalization system
- Demonstrate key DOD applications in appropriately harsh, environments

Technical Areas

Precision Geo-Localization

3-D multi-lateration

· scalable and power-efficient geolocalization

techniques

in-depth tradeoff
 analysis
 (accuracy vs.
 power, number of nodes ..)

mobility support

UWB Geolocalization Advantage

- · GHz bandwidth gives sub-centimeter resolution
- · inherent part of UWB networking node (no need for separate hw)
- · smaller sensitivity to multipath delay ??

Bandwidth at lower frequencies gives penetrating ability Direct path signal may be weaker, but if detected, is used as first-arrival signal

Ultrawideband (Impulse Radio) Communications Technical Challenges

NETEX Industry Day

10 September 01

Dr. James A. Freebersyser
Program Manager, DARPA/ATO
(703) 696-2296
jfree@darpa.mil

Potential Advantages of UWB

- Ultrawideband Operation (> 1 GHz)
 - Better multipath fading performance (like any wideband signal would)
 - Large processing gain (> 40 dB) improves Anti-Jam (AJ) properties
 - Covert operation (Low Probability of Intercept/Detection (LPI/D))
 - Position location on the order of a few centimeters
- Greatly Reduced Power Consumption
 - Single chip (CMOS) implementation without mixed signal processing
 - Low duty cycle operation
 - Higher energy efficiency due to pulsed battery operation
- More Efficient Use of the Spectrum
 - More users per unit of bandwidth
 - Unregulated (FCC Part 15) operation
 - Reduced near-far interference resulting from low duty cycle operation
 - Full-duplex operation in the same frequency band

The Potential of UWB Impulse Radio Has Not Been Realized

Summary/Conclusion

- Ultrawideband What's Old Is New Again!
 - Wireless could have gone straight to UWB if DSP had been available ©
- A Cornucopia of Commercial and Military Applications
 - Communications, radar, geolocation, automation, measurement, etc.
- UWB Has The Potential for Revolutionary Change
 - Regulatory changes (FCC Part 15?) are needed
- UWB Research Has Only Just Begun
 - Propagation, antennas, circuits, devices, waveforms, signal processing, radio architectures, MAC/network protocols, etc.

Ultra Wide Band Applications and Requirements

DARPA NETEX Industry Day McLean, VA

10 Sept 2001

Steven J. Gunderson NFESC Port Hueneme

V (805) 982-1262, Fax (805) 982-4970 steve@nfesc.navy.mil

UWB Applications: Logistics

Desert Storm

- First MRC with ISO Containers
 - 40,000 Containers, Opened 25,000
 - » Paper Manifests Were Inaccurate and Easily Lost
 - ISO Containers Hid the Stuff
 - » Previous MRCs Used Break Bulk
 - Misplaced & Lost Stuff = \$3 Billion» GAO Report B-246015, Dec 1991

The BIG Questions

- What Do I Have?
- Where Is My Stuff?
- What Is In the Box?
- What Is Its Condition/History?

UWB Applications: Logistics

Naval Total Asset Visibility (NTAV)

- Tackle the Unsolved Hard Problems
 - Precision Asset Location (PAL)
 - » Where's my Stuff?
 - » Ship Stow Plans
 - 40% Stow Error, Re-Inventory Required
 - Autonomous Manifesting (AM)
 - » What's in the Box?
 - » The "Holy Grail of Logistics"
 - Infrastructure Reduction (IR)
 - » Cost Reduction (\$K's/Reader)
 - » Ship Pre-Installation and Cabling
- Transportation is a \$1T Industry
 - DoD is Largest Purchaser of Transportation
 - US CINC Transportation (TRANSCOM)

UWB Applications: Weapons

Carrier Weapons Management

- NAVAIR / NAWC Lakehurst
- Problem
 - Aircraft Leave With Partial Loads
 - » Desert Storm: Several Carriers Continuously Launched Aircraft with 2 or Less Weapons
 - Locate Weapon Components for Assembly
 » Up to 9 hrs for Assembly: 8 Decks, 32 Mags
 - Locate Weapons in Hanger & Flight Decks» Staging Areas, Main Deck, Bomb Farm
- Hot RF Spots Throughout Carrier
 - High Powered Radars: EMI / EMC / HERO
- Proposed Solution
 - UWB Precision Location of Weapon Sleds: 1 ft
- Makes Aircraft Carriers More Lethal

UWB Applications: Geolocation

UAV Landing System

- UAV Common Automatic Recovery System (UCARS)
 - Pioneer UAV
 - Microwave: 3 ft Accuracy
 - 6 ft Landing Grid
 - » Pitch / Roll / Stability
 - » Ship Under Way
- RQ-8 Vertical Takeoff UAV
 - 3 hrs 150 nmi, 12 hrs Total
 - Payload Capacity = 300 lbs
 - Comms Payloads
 - » (3) ARC-210 (Aircraft Radio)
 - » TCDL: 14-15 GHz, 10 Mbps
 - » SINCGARS to Ground MEUs

UWB Applications: Comms

Marine Corps OMFTS/STOM

- High Capacity LOS Comms
 - Replace MRC-142
 - » 576 Kb Ship-to-Shore, 25 nm
 - » Losing 1350-1850 MHz Band
- Command Post on the Move
 - Secure Wireless LAN
 - » Connect Servers Within CP
- Convoys on the Move
 - Inter-Vehicle Comms
- Combat ID
 - Geolocation
 - Surface Management
 - » Ship-to-Shore Movement: AAAV & LCAC
- Asset Visibility

UWB Applications: Comms

Urban Warfare

MOUT ACTD / USA / USMC

- Frustrated Requirements: C4I

» R1: Identification of Friendly, Enemy,

Noncombatants (IFF)

» R3: Hands-Free Non-Line of Sight

(NLOS) Communications

» R7: Thru-Wall Sensing

» R41: Position/Location Inside Buildings

- Military/Com'l Comms Inadequate

» Marine Corps Inter-Squad Radios (ISR)

ICOM UHF Radios: Non-Secure - 16,000 Units

» Need Secure Radio, 1-5 Km Range

PRC-126 Size, Light Weight (Micro-UAV)

• C2 for Unmanned Ground Vehicles & Video

- Transition to Proposed Vanguard ATD '03

- Transition to SBCCOM Objective Force Warrior Program

UWB Applications: Comms

Tactical Mobile Robots (TMR)

Imperatives

- Tele-Operation
 - » C2, Audio and Video
 - » Robots Talk to Each Other
- Geolocation / Navigation
 - » Robots Find Each Other
- Autonomously Reestablish Comms

Requirements

- Bandwidth
 - » C2 & Audio (low latency) 25 Kbps
 - » Video (B&W, fuzzy, min) 100 Kbps
 - » Color Video (160x120) 1-2 Mbps
 - » High Res Video (320x240) 3 Mbps
- Range
 - » 500m min (LAN Block Conv), 1-2 Km

- Weight & Power: 1-2 lb, 2-5 W
- Geolocation: 1 cm
 - » Navigation/Mapping/Marsupial
- Environment
 - » Urban: Streets, Buildings, Sewers, Tunnels
 - » High EMI: DC Motors

UWB Requirements

Advantages

- Multi-Path
 - Minimize Nulls in Urban Environments
 - 1/r² -- 1/r⁴ -- 1/r⁶ Losses
 - » 1 2 Orders Better than Narrow Band
 - Extra Transmitter Power Not Needed: 10-100X

Co-Interference

- FHSS: SINCGARS -- > 2.5 Radios Co-located
- DSSS: Near-Far Power Management -- Qualcomm 1 dB Match Required
- UWB: 40-50 dB Rejection

• Land Mobil Radio (LMR) / Cellular

- Greater Agility: No Critically Tuned Tanks / Combiners / Splitters
- No Dedicated Reservation Channel

Interceptibility

- Inherent LPI/LPD/LPE/AJ
- Geolocation
 - High Inherent Accuracy: Short Pulse Length ~1 ns = 1 ft
- Dual Capability: Communications and Geolocation Simultaneously

UWB Requirements

Architectures

Voice

- Inter Squad Radio (ISR)
- Land Mobile Radio (LMR)

Data

- Burst Store & Forward
- TCP-IP / Packet
- Ad-Hoc Peer-to-Peer Networks

Video

- High Data Rate 1-3 Mbps

Geolocation

- Intra-Squad
- Urban: Bldgs, Streets, Sewers
- Alternate GPS

Warfighter Requirements

Works Anywhere

- Urban
- Triple Canopy
- Mountain Terrain
- No Terrestrial Infrastructure

Quality

- Fast Enough
- Secure: LPI/LPD/LPE/AJ
- 20 30 dB More Link Margin

Logistics

- Small
- Light
- Cheap

Conclusion

Hunter Warrior AWE

- Marine Corps Warfighting Lab
 - First AWE, 1997 All Data
 - RMA: Asymmetrical Warfare
- DARPA Provided Technology
 - Land Mobil Radio (LMR)
 - Internet Node In the Sky (INITS)
 - Shared Net: Content Centric
 - ADOCS / LeatherNet (M&S)
 - Surrogates, But They Worked
- Burst Store & Forward
 - LMR: Serial, 2.7 Kbps
 - » Short Message: OTH Gold & VMF
 - » 3 Sec on Air, Hard to Locate
 - INITS: TCP-IP, 300 Kbps Total

"In This World Where We're Carrying **Mobile Handsets**, I'm Afraid the Communications of
the World's Most Advanced Military Are Operating
at Levels that are 40 Years Out of Date."

Adm. Owens (ret)